aclib : a GAP 4 package - Index
A
B
D
E
H
I
M
N
O
P
R
T
- Algorithms for almost crystallographic groups 2.0
- AlmostCrystallographicDim3 3.1.1
- AlmostCrystallographicDim4 3.1.1
- AlmostCrystallographicGroup 3.1.1
- AlmostCrystallographicInfo 3.3.1
- AlmostCrystallographicPcpDim3 3.2.1
- AlmostCrystallographicPcpDim4 3.2.1
- AlmostCrystallographicPcpGroup 3.2.1
- Betti numbers 2.2
- BettiNumber 2.2.2
- BettiNumbers 2.2.3
- Determination of certain extensions 2.3
- Example computations I 4.1
- Example computations II 4.2
- Example computations III 4.3
- Example computations with almost crystallographic groups 4.0
- HasExtensionOfType 2.3.1
- HolonomyGroup 3.2.3
- IsAlmostBieberbachGroup 2.1.2
- IsAlmostCrystallographic 2.1.1
- IsomorphismPcpGroup 3.2.2
- More about almost crystallographic groups 1.1
- More about the type and the defining parameters 3.3
- NaturalHomomorphismOnHolonomyGroup 3.2.3
- OrientationModule 2.2.1
- Polycyclically presented groups 3.2
- Properties of almost crystallographic groups 2.1
- Rational matrix groups 3.1
- The Almost Crystallographic Groups Package 1.0
- The catalog of almost crystallographic groups 3.0
- The electronic versus the printed library 3.4
[Up]
aclib manual
January 2020