
Themen und Anwendungen der Computeralgebra

The GAP package SingularInterface
M. Barakat, M. Horn, F. Lübeck, O. Motsak, M. Neunhöffer, H.
Schönemann
(TU Kaiserslautern, JLU Gießen, RWTH Aachen University,
TU Kaiserslautern, triAGENS GmbH, TU Kaiserslautern)

barakat@mathematik.uni-kl.de
max.horn@math.uni-giessen.de
frank.luebeck@math.rwth-aachen.de
motsak@mathematik.uni-kl.de
max@9hoeffer.de
hannes@mathematik.uni-kl.de

What is SingularInterface?
The GAP package SingularInterface is a highly
efficient and robust unidirectional low-level interface to
SINGULAR [2, 3]. It is the outcome of an intensive col-
laboration between core developers of both systems.

The goal of this interface is to map all of SINGU-
LAR’s powerful functionality into GAP. To achieve this
it automatically wraps all SINGULAR datatypes and ex-
ports all of SINGULAR’s interface procedures to GAP.1
Furthermore, all procedures of any contributed library
can be loaded on demand.2

This package is a rather “faithful” image of SINGU-
LAR; it does not make an extensive attempt for a better
integration of SINGULAR into the GAP ecosystem. This
is intentionally left to other packages, which are free to
realize this in different ways.

The development of SingularInterface has
reached a β-phase and is already actively used in some
research projects. We hope to attract more users in the
near future, whose feedback will be crucial for a suc-
cessful further development.

How to get it?
To download and install SingularInterface
please follow the instructions on

http://gap-system.github.io/
SingularInterface/

If you are reading this article, say, more than one year
in the future, and have a recent GAP installation, then

hopefully you already have a working version of this
package.

To check that the package has been successfully in-
stalled, start GAP and type:

gap> LoadPackage("SingularInterface");
true

To see all imported procedures type:

gap> SI_<press TAB twice>

The SINGULAR library “standard.lib” is loaded
by default. To see all imported SINGULAR library pro-
cedures type:

gap> SIL_<press TAB twice>

To load any other library, e.g. “matrix.lib”, type:

gap> SI_LIB("matrix.lib");
true

Goals
The motivation behind developing Singular-
Interface is the increasing interest of various re-
search projects in combining the strength of both sys-
tems: GAP users get access to SINGULAR’s polynomial
arithmetic and highly optimized Gröbner basis engine.
SINGULAR users gain a second front end language for
this engine – in addition to the current SINGULAR lan-
guage – with an advanced object model primarily de-
signed for modeling higher mathematical structures, as
well as access to GAP as an expert system for group
and representation theory.

1With the prefix “SI_” prepended to their names.
2They appear in GAP with the prefix “SIL_” prepended to their names.

1

mailto:barakat@mathematik.uni-kl.de
mailto:max.horn@math.uni-giessen.de
mailto:frank.luebeck@math.rwth-aachen.de
mailto:motsak@mathematik.uni-kl.de \ max@9hoeffer.de \ hannes@mathematik.uni-kl.de
mailto:motsak@mathematik.uni-kl.de \ max@9hoeffer.de \ hannes@mathematik.uni-kl.de
mailto:motsak@mathematik.uni-kl.de \ max@9hoeffer.de \ hannes@mathematik.uni-kl.de
http://gap-system.github.io/SingularInterface/
http://gap-system.github.io/SingularInterface/

An example
Here is a short example in SINGULAR 4.0.1 demonstrating some basic procedures. On the left you see the SIN-

GULAR code, on the right the corresponding GAP code. SINGULAR uses “=” for assignments and suppresses any
output while GAP uses “:=” for assignments and triggers the so-called View-method, which gives a very brief de-
scription of the object (unless suppressed by a trailing “;;”). Basically, SINGULAR’s print procedure is mapped
to the so-called Display-method in GAP. The current version of SingularInterface is 2014.09.23.

Start by loading SingularInterface in GAP.
> // standard.lib is automatically preloaded
> // this example needs no further libraries

gap> LoadPackage("SingularInterface");
true

Define the ring R := Q[x0, x1, x2, x3] (with the monomial ordering degrevlex):
> ring R=0,(x0,x1,x2,x3),dp;

> short=0;

> option(redTail);

gap> R := SI_ring(0, "x0..3", [["dp",4]]);
<singular ring, 4 indeterminates>
gap> ## short=0 is the default, disable by:
gap> ## Singular("short=1");
gap> SI_option("redTail");
true

Define the polynomial (x1 + x3)
2:

> poly p=(x1+x3)^2; p;
x1^2+2*x1*x3+x3^2

gap> AssignGeneratorVariables(R);
#I Assigned the global variables
#I [x0, x1, x2, x3]
gap> p := (x1+x3)^2;
x1^2+2*x1*x3+x3^2
gap> IsSingularPoly(p);
true

Define the ideal I := 〈x20 − x1x3, x0x1 − x2x3〉CR:
> ideal I=x0^2-x1*x3,x0*x1-x2*x3;

> print(I);
x0^2-x1*x3,
x0*x1-x2*x3

gap> I := SI_ideal([x0^2-x1*x3, x0*x1-x2*x3]);
<singular ideal, 2 gens>
gap> Display(I);
x0^2-x1*x3,
x0*x1-x2*x3

The corresponding matrix i:
> def i=matrix(I);

> print(i);
x0^2-x1*x3,x0*x1-x2*x3

gap> i := SI_matrix(I);
<singular matrix, 1x2>
gap> Display(i);
x0^2-x1*x3,x0*x1-x2*x3

The sum I + I means the sum of ideals:
> J=I+I;

> print(J);
x0^2-x1*x3,
x0*x1-x2*x3

gap> J := I + I;
<singular ideal, 2 gens>
gap> Display(J);
x0^2-x1*x3,
x0*x1-x2*x3

Whereas i+ i means the sum of matrices:
> print(i+i);
2*x0^2-2*x1*x3,2*x0*x1-2*x2*x3

gap> Display(i + i);
2*x0^2-2*x1*x3,2*x0*x1-2*x2*x3

The squared ideal I2 CR:
> def I2=I^2;

> print(I2);
x0^4-2*x0^2*x1*x3+x1^2*x3^2,
x0^3*x1-x0*x1^2*x3-x0^2*x2*x3+x1*x2*x3^2,
x0^2*x1^2-2*x0*x1*x2*x3+x2^2*x3^2

gap> I2 := I^2;
<singular ideal, 3 gens>
gap> Display(I2);
x0^4-2*x0^2*x1*x3+x1^2*x3^2,
x0^3*x1-x0*x1^2*x3-x0^2*x2*x3+x1*x2*x3^2,
x0^2*x1^2-2*x0*x1*x2*x3+x2^2*x3^2

The Gröbner basis of the ideal I is returned as a new different (but mathematically equal) ideal G:
> def G=std(I);

> print(G);
x0*x1-x2*x3
x0^2-x1*x3
x1^2*x3-x0*x2*x3

gap> G := SI_std(I);
<singular ideal, 3 gens>
gap> Display(G);
x0*x1-x2*x3,
x0^2-x1*x3,
x1^2*x3-x0*x2*x3

The syzygies of the generators of G are the columns of the SINGULAR datatype module3:
3The datatype module in SINGULAR 4.0.1 is in first approximation a specialized sparse data structure for column oriented matrices

with compressed columns, where each column has the datatype vector. For more details see the SingularInterface manual [1].

2

> def S=syz(G); S;
S[1]=x0*gen(1)-x1*gen(2)-gen(3)
S[2]=x1*x3*gen(1)-x2*x3*gen(2)-x0*gen(3)
> print(S);
x0, x1*x3,
-x1,-x2*x3,
-1, -x0

gap> S := SI_syz(G);
<singular module, 2 vectors in free module of
rank 3>

gap> Display(S);
x0, x1*x3,
-x1,-x2*x3,
-1, -x0

To access the second column of S use:
> S[2];
x1*x3*gen(1)-x2*x3*gen(2)-x0*gen(3)
> print(S[2]);
[x1*x3,-x2*x3,-x0]

gap> S[2];
<singular vector, 3 entries>
gap> Display(S[2]);
[x1*x3,-x2*x3,-x0]

To access the first entry of the second column of S use:
> S[2][1];
x1*x3
> p-S[2][1];
x1^2+x1*x3+x3^2

gap> S[2][1];
x1*x3
gap> p - S[2][1];
x1^2+x1*x3+x3^2

To create a matrix use:
> matrix m[3][2]=x0,x3, x1,x2, x3,x0;

> print(m);
x0,x3,
x1,x2,
x3,x0

gap> m := SI_matrix(R,3,2,"x0,x3,x1,x2,x3,x0");
<singular matrix, 3x2>
gap> Display(m);
x0,x3,
x1,x2,
x3,x0

To extract the (2,1)-entry from the matrix use:
> m[2,1];
x1

gap> m[[2,1]];
x1

The sum of the module S and the matrix m is their augmentation:

> print(S+m);
x0, x1*x3, x0,x3,
-x1,-x2*x3,x1,x2,
-1, -x0, x3,x0

gap> S + m;
<singular module, 4 vectors in free module of
rank 3>

gap> Display(S + m);
x0, x1*x3, x0,x3,
-x1,-x2*x3,x1,x2,
-1, -x0, x3,x0

The development

How does it work?
SingularInterface aims to be a comprehensive
bridge between GAP and SINGULAR with as little over-
head as possible, both in terms of speed and memory.
To achieve this goal, some key design decisions were
crucial:

(1) Avoid converting data between the two systems,
as conversions are expensive.

(2) Automate generating function bindings as much
as possible.

(3) We stay relatively low-level with the interface,
mostly refraining from trying to change SINGU-
LAR behaviour to be more GAP like (with one
exception, see below).

Regarding (1), on the GAP side we use “wrapper
objects” around SINGULAR objects. That is, tiny GAP
objects which essentially consist of a pointer to the ac-
tual SINGULAR object (such as a polynomial) plus some

meta information (types, attributes). With the excep-
tions of small integers and strings, we never automat-
ically convert SINGULAR objects into “native” GAP
objects. Indeed, in most cases that would be point-
less, as for further operations with the object, we would
have to convert it back into a SINGULAR object any-
way. So when you have a SINGULAR polynomial p
and call SI_deg(p), in the background, Singular-
Interface extracts the pointer to the SINGULAR ob-
ject from it, then invokes the SINGULAR interpreter C
code for deg, and returns the result to the user (since
the result is a small integer, it is not wrapped).

Of course when necessary, you can still convert from
and to “native” GAP objects (although this is one of the
areas where there is still work to be done, in order to
cover all possible SINGULAR coefficient ring types).

A major complicating factor for this approach is that
GAP and SINGULAR use very different memory man-
agement systems (GAP uses a so-called “generational
moving garbage collector”, in which objects change
their position in memory over time, while SINGULAR
use a more traditional “malloc” system plus reference
counting, and expects objects to stay at a fixed position
in memory). With some clever tricks, aided by a few
small but helpful changes on the SINGULAR side, this

3

now works extremely well.
Regarding (2), here is one example: From the data

structures the SINGULAR interpreter uses to lookup
function names (such as transpose), the build sys-
tem of SingularInterface automatically gener-
ates bindings for all SINGULAR functions in GAP
(SI_transpose). Thus when the SINGULAR team
adds a new function, SingularInterface automat-
ically supports it (after recompiling). This also covers
SINGULAR library functions. Finally, in addition to in-
terpreter and library functions, we also provide direct
access to select SINGULAR C++ kernel functions such
as p_Mult_mm (with _SI_ prepended) which can be
used by experts to further optimize their code. This,
too, is automatically generated and can thus easily be
extended to expose more functionality, if requested.

Regarding (3), we mostly expose the SINGULAR in-
terface faithfully and with no changes (as opposed to
trying to make it “more GAP like”, or trying to fix per-
ceived design flaws etc.). We plan to eventually add a
high-level layer built atop the existing interface which
changes some of this; however, this may well be in a
separate package. But providing this raw access has
multiple advantages: It allows others to build alterna-
tive high-level front ends (as everybody will have a dif-
ferent idea about how to do that), and it also frees us
from making complicated decisions on what is “right”
and “wrong”. Finally, it has the added benefit that the
SINGULAR manual can be used as a reference manual
for SingularInterface. There is one major ex-
ception: We try to hide the SINGULAR concept of a
“global” or “active” ring from users as much as possible.
In SINGULAR, the result of a command like var(1)
implicitly depends on the “active” ring. Working with
multiple rings thus becomes rather tedious. To avoid
this, in SingularInterface, each GAP wrapper
object for “ring dependent” SINGULAR objects (such as
polynomials, ideals, modules, but not integers or rings
themselves) carries a reference to the ring it belongs to.
The user does not need to worry about “active” rings
at all. As a side effect, a few SINGULAR functions
need to be called with one additional parameter, namely
the ring they refer to. For example, var(1) becomes
SI_var(r,1), where r is the (now explicit) SINGU-
LAR ring we refer to.

Note that all of this bypasses the SINGULAR lan-
guage. However, to guarantee complete access to SIN-
GULAR, one can still send arbitrary commands to the
SINGULAR interpreter as a string passed to the function
Singular(). For details, we refer the reader to the
SingularInterface manual (which is still work in
progress).

Activity
The development of SingularInterface started

in May 2011. The project was generously supported
by the University of St Andrews, the University of
Kaiserslautern, and DFG priority program SPP-1489.
The C/C++ code was contributed by Max Horn, Frank
Lübeck, and Max Neunhöffer. To keep the interface
slick and efficient Hans Schönemann and Oleksandr
Motsak made several changes and improvements on the
side of SINGULAR. The homalg project [4] heavily
uses SINGULAR through its own IO-based interface.
It was thus a natural candidate which helped to test
and stabilize some parts of SingularInterface
through its extensive test suite.

Outlook
While SingularInterface can already be used
(and is used) for research work, there is still quite a lot
to be done before we can call it a complete product. We
need to add some more functionality, expand the man-
ual, and add many test cases. Maybe the most urgent is
to make convenient the construction of all types of rings
supported by SINGULAR.4

For this, we would appreciate your help. For ex-
ample, if you experience any issue with Singular-
Interface, please report it using our issue tracker at
GitHub5. The same holds if you feel that some function-
ality is missing or not as easy to access as it should be.
We cannot guarantee to fulfil every wish, but it helps us
to prioritize our efforts.

Beyond this, we also welcome contributions to the
code, the manual or the test suite. Ideally in the form of
pull requests6.

A future challenge would be to port Singular-
Interface to HPC-GAP7 once the future multi-
threaded SINGULAR is available.

References

[1] M. Barakat, M. Horn, F. Lübeck, O. Motsak,
M. Neunhöffer, H. Schönemann, Singular-
Interface – A GAP interface to SINGU-
LAR, (http://gap-system.github.io/
SingularInterface/), 2011–2014.

[2] W. Decker, G.-M. Greuel, G. Pfister, and H. Schöne-
mann, SINGULAR 3-1-6 — A computer algebra sys-
tem for polynomial computations, (http://www.
singular.uni-kl.de), 2013.

[3] The GAP Group, GAP – Groups, Algorithms,
and Programming, Version 4.7.5, (http://www.
gap-system.org), 2014.

[4] The homalg project authors, The homalg project
– Algorithmic Homological Algebra, (http:
//homalg.math.rwth-aachen.de/),
2003–2014.

4At the moment, they are accessible via the function Singular().
5https://github.com/gap-system/SingularInterface/issues
6https://github.com/gap-system/SingularInterface/pulls
7 HPC-GAP stands for “High Performance Computing GAP” and adds parallelization support to GAP.

4

http://gap-system.github.io/SingularInterface/
http://gap-system.github.io/SingularInterface/
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.gap-system.org
http://www.gap-system.org
http://homalg.math.rwth-aachen.de/
http://homalg.math.rwth-aachen.de/
https://github.com/gap-system/SingularInterface/issues
https://github.com/gap-system/SingularInterface/pulls

	Themen und Anwendungen der Computeralgebra
	The GAP package SingularInterface(M. Barakat, M. Horn, F. Lübeck, O. Motsak, M. Neunhöffer, H. Schönemann)

