Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

* (for bipartitions) 3.4
* (for PBRs) 4.4
* (for matrices over a semiring) 5.2
* (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6
< (for bipartitions) 3.4
< (for PBRs) 4.4
< (for matrices over a semiring) 5.2
< (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6
= (for bipartitions) 3.4
= (for PBRs) 4.4
= (for matrices over a semiring) 5.2
= (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6
\<, for Green's classes 12.3-1
\^, for a matrix over finite field group and matrix over finite field 5.7-8
\in 5.3-3
^ (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6
AnnularJonesMonoid 8.3-5
ApsisMonoid 8.3-11
AsBipartition 3.3-1
AsBlockBijection 3.3-2
AsBooleanMat 5.3-2
AsInverseSemigroupCongruenceByKernelTrace 16.7-3
AsList 5.1-10
AsListCanonical 13.1-1
AsMatrix, for a filter and a matrix 5.1-6
    for a filter, matrix, and threshold 5.1-6
    for a filter, matrix, threshold, and period 5.1-6
AsMatrixGroup 5.7-10
AsMonoid 6.5-4
AsMutableList 5.1-10
AsPartialPerm, for a bipartition 3.3-4
    for a PBR 4.3-3
AsPBR 4.3-1
AsPermutation, for a bipartition 3.3-5
    for a PBR 4.3-4
AsRMSCongruenceByLinkedTriple 16.6-8
AsRZMSCongruenceByLinkedTriple 16.6-8
AsSemigroup 6.5-3
AsSemigroupCongruenceByGeneratingPairs 16.6-7
AsTransformation, for a bipartition 3.3-3
    for a PBR 4.3-2
BaseDomain, for a matrix over finite field 5.4-7
Bipartition 3.2-1
BipartitionByIntRep 3.2-2
BlistNumber 5.3-7
BlocksNC 3.6-2
BooleanMat 5.3-1
BooleanMatNumber 5.3-6
BrauerMonoid 8.3-2
CanonicalBlocks 3.5-18
CanonicalBooleanMat 5.3-8
    for a perm group and boolean matrix 5.3-8
    for a perm group, perm group and boolean matrix 5.3-8
CanonicalForm, for a free inverse semigroup element 10.3-1
CanonicalRepresentative 16.6-6
CanonicalTransformation 13.12-9
CatalanMonoid 8.1-1
CharacterTableOfInverseSemigroup 15.1-10
ClosureInverseMonoid 6.4-1
ClosureInverseSemigroup 6.4-1
ClosureMonoid 6.4-1
ClosureSemigroup 6.4-1
CodomainOfBipartition 3.5-11
ComponentRepsOfPartialPermSemigroup 13.13-1
ComponentRepsOfTransformationSemigroup 13.12-1
ComponentsOfPartialPermSemigroup 13.13-2
ComponentsOfTransformationSemigroup 13.12-2
CompositionMapping2, for IsRMSIsoByTriple 17.2-4
    for IsRZMSIsoByTriple 17.2-4
CongruenceClasses 16.3-5
CongruenceClassOfElement 16.3-4
CongruencesOfPoset 16.4-7
CongruencesOfSemigroup, for a semigroup 16.4-1
    for a semigroup and a multiplicative element collection 16.4-1
ContentOfFreeBandElement 10.4-7
ContentOfFreeBandElementCollection 10.4-7
CrossedApsisMonoid 8.3-11
CyclesOfPartialPerm 13.13-3
CyclesOfPartialPermSemigroup 13.13-4
CyclesOfTransformationSemigroup 13.12-3
DClass 12.1-2
DClasses 12.1-4
DClassNC 12.1-3
DClassOfHClass 12.1-1
DClassOfLClass 12.1-1
DClassOfRClass 12.1-1
DClassReps 12.1-5
DegreeOfBipartition 3.5-1
DegreeOfBipartitionCollection 3.5-1
DegreeOfBipartitionSemigroup 3.8-5
DegreeOfBlocks 3.6-5
DegreeOfPBR 4.5-2
DegreeOfPBRCollection 4.5-2
DegreeOfPBRSemigroup 4.6-2
DigraphOfActionOnPairs, for a transformation semigroup 13.12-4
    for a transformation semigroup and an integer 13.12-4
DigraphOfActionOnPoints, for a transformation semigroup 13.12-5
    for a transformation semigroup and an integer 13.12-5
DimensionOfMatrixOverSemiring 5.1-3
DimensionOfMatrixOverSemiringCollection 5.1-4
DirectProduct 6.4-4
DirectProductOp 6.4-4
DomainOfBipartition 3.5-10
DotSemilatticeOfIdempotents 18.1-2
DotString 18.1-1
DualSymmetricInverseMonoid 8.3-7
DualSymmetricInverseSemigroup 8.3-7
ELM_LIST (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6
ELM_LIST, for IsRMSIsoByTriple 17.2-3
EmptyPBR 4.2-3
EndomorphismMonoid, for a digraph 6.7-1
    for a digraph and vertex coloring 6.7-1
EndomorphismsPartition 8.1-2
Enumerate 13.1-3
EnumeratorCanonical 13.1-1
EquivalenceRelationCanonicalLookup 16.3-11
EquivalenceRelationCanonicalPartition 16.3-12
EquivalenceRelationLookup 16.3-10
EvaluateWord 13.5-1
ExtRepOfObj, for a bipartition 3.5-3
    for a blocks 3.6-3
    for a PBR 4.5-3
FactorisableDualSymmetricInverseMonoid 8.3-8
Factorization 13.5-2
FixedPointsOfTransformationSemigroup, for a transformation semigroup 13.12-6
FreeBand, for a given rank 10.4-1
    for a list of names 10.4-1
    for various names 10.4-1
FreeInverseSemigroup, for a given rank 10.1-1
    for a list of names 10.1-1
    for various names 10.1-1
FullBooleanMatMonoid 8.6-1
FullMatrixMonoid 8.5-1
FullPBRMonoid 8.4-1
FullTropicalMaxPlusMonoid 8.7-1
FullTropicalMinPlusMonoid 8.7-2
GeneralLinearMonoid 8.5-1
GeneratingPairsOfLeftSemigroupCongruence 16.2-4
GeneratingPairsOfRightSemigroupCongruence 16.2-4
GeneratingPairsOfSemigroupCongruence 16.2-4
Generators 13.6-1
GeneratorsOfSemigroupIdeal 7.2-1
GeneratorsSmallest, for a semigroup 13.6-5
GLM 8.5-1
GossipMonoid 8.6-5
GraphInverseSemigroup 11.1-1
GraphOfGraphInverseSemigroup 11.1-5
GreensDClasses 12.1-4
GreensDClassOfElement 12.1-2
    for a free band and element 10.5-1
GreensDClassOfElementNC 12.1-3
GreensHClasses 12.1-4
GreensHClassOfElement 12.1-2
    for a Rees matrix semigroup 12.1-2
GreensHClassOfElementNC 12.1-3
GreensJClasses 12.1-4
GreensLClasses 12.1-4
GreensLClassOfElement 12.1-2
GreensLClassOfElementNC 12.1-3
GreensRClasses 12.1-4
GreensRClassOfElement 12.1-2
GreensRClassOfElementNC 12.1-3
GroupHClass 12.4-1
GroupOfUnits 13.8-1
HallMonoid 8.6-4
HClass 12.1-2
    for a Rees matrix semigroup 12.1-2
HClasses 12.1-4
HClassNC 12.1-3
HClassReps 12.1-5
IdempotentGeneratedSubsemigroup 13.9-3
Idempotents 13.9-1
IdentityBipartition 3.2-3
IdentityMatrixOverFiniteField, for a finite field and a pos int 5.4-2
    for a matrix over finite field and pos int 5.4-2
IdentityPBR 4.2-4
ImagesElm, for IsRMSIsoByTriple 17.2-5
ImagesRepresentative, for IsRMSIsoByTriple 17.2-5
IndexPeriodOfSemigroupElement 13.4-1
InfoSemigroups 2.6-1
InjectionNormalizedPrincipalFactor 12.4-7
InjectionPrincipalFactor 12.4-7
IntRepOfBipartition 3.5-4
InverseMonoidByGenerators 6.2-1
InverseOp 5.6-1
    for an integer matrix 5.5-1
InverseSemigroupByGenerators 6.2-1
InverseSemigroupCongruenceByKernelTrace 16.7-2
InverseSubsemigroupByProperty 6.4-3
IrredundantGeneratingSubset 13.6-3
IsActingSemigroup 6.1-3
IsAntiSymmetricBooleanMat 5.3-13
IsAperiodicSemigroup 14.1-18
IsBand 14.1-1
IsBipartition 3.1-1
IsBipartitionCollColl 3.1-2
IsBipartitionCollection 3.1-2
IsBipartitionMonoid 3.8-1
IsBipartitionPBR 4.5-8
IsBipartitionSemigroup 3.8-1
IsBlockBijection 3.5-16
IsBlockBijectionMonoid 3.8-2
IsBlockBijectionPBR 4.5-8
IsBlockBijectionSemigroup 3.8-2
IsBlockGroup 14.1-2
IsBlocks 3.6-1
IsBooleanMat 5.1-8
IsBooleanMatCollColl 5.1-9
IsBooleanMatCollection 5.1-9
IsBooleanMatMonoid 5.7-2
IsBooleanMatSemigroup 5.7-1
IsBrandtSemigroup 15.2-2
IsCliffordSemigroup 15.2-1
IsColTrimBooleanMat 5.3-9
IsCombinatorialSemigroup 14.1-18
IsCommutativeSemigroup 14.1-3
IsCompletelyRegularSemigroup 14.1-4
IsCompletelySimpleSemigroup 14.1-21
IsCongruenceClass 16.3-1
IsCongruenceFreeSemigroup 14.1-5
IsCongruencePoset 16.4-4
IsConnectedTransformationSemigroup, for a transformation semigroup 13.12-10
IsDTrivial 14.1-18
IsDualTransBipartition 3.5-13
IsDualTransformationPBR 4.5-10
IsEmptyPBR 4.5-5
IsEnumerableSemigroupRep 6.1-4
IsEquivalenceBooleanMat 5.3-16
IsEUnitaryInverseSemigroup 15.2-3
IsFactorisableInverseMonoid 15.2-4
IsFinite 5.7-3
IsFreeBand, for a given semigroup 10.4-3
IsFreeBandCategory 10.4-2
IsFreeBandElement 10.4-4
IsFreeBandElementCollection 10.4-5
IsFreeBandSubsemigroup 10.4-6
IsFreeInverseSemigroup 10.1-3
IsFreeInverseSemigroupCategory 10.1-2
IsFreeInverseSemigroupElement 10.1-4
IsFreeInverseSemigroupElementCollection 10.1-5
IsFullMatrixMonoid 8.5-3
IsFullyEnumerated 13.1-4
IsGeneralLinearMonoid 8.5-3
IsGraphInverseSemigroup 11.1-4
IsGraphInverseSemigroupElement 11.1-4
IsGraphInverseSemigroupElementCollection 11.1-6
IsGraphInverseSubsemigroup 11.1-7
IsGreensClassNC 12.3-3
IsGreensDGreaterThanFunc 12.1-12
IsGroupAsSemigroup 14.1-6
IsHTrivial 14.1-18
IsIdempotentGenerated 14.1-7
IsIdentityPBR 4.5-6
IsIntegerMatrix 5.1-8
IsIntegerMatrixCollColl 5.1-9
IsIntegerMatrixCollection 5.1-9
IsIntegerMatrixMonoid 5.7-2
IsIntegerMatrixSemigroup 5.7-1
IsInverseSemigroupCongruenceByKernelTrace 16.7-1
IsInverseSemigroupCongruenceClassByKernelTrace 16.7-6
IsIsomorphicSemigroup 17.1-1
IsJoinIrreducible 15.2-5
IsLeftCongruenceClass 16.3-2
IsLeftSemigroupCongruence 16.1-2
IsLeftSimple 14.1-8
IsLeftZeroSemigroup 14.1-9
IsLinkedTriple 16.6-5
IsLTrivial 14.1-18
IsMajorantlyClosed 15.2-6
IsMatrixOverFiniteField 5.1-8
IsMatrixOverFiniteFieldCollColl 5.1-9
IsMatrixOverFiniteFieldCollection 5.1-9
IsMatrixOverFiniteFieldGroup 5.7-7
IsMatrixOverFiniteFieldMonoid 5.7-2
IsMatrixOverFiniteFieldSemigroup 5.7-1
IsMatrixOverSemiring 5.1-1
IsMatrixOverSemiringCollColl 5.1-2
IsMatrixOverSemiringCollection 5.1-2
IsMatrixOverSemiringMonoid 5.7-2
IsMatrixOverSemiringSemigroup 5.7-1
IsMaximalSubsemigroup 13.10-3
IsMaxPlusMatrix 5.1-8
IsMaxPlusMatrixCollColl 5.1-9
IsMaxPlusMatrixCollection 5.1-9
IsMaxPlusMatrixMonoid 5.7-2
IsMaxPlusMatrixSemigroup 5.7-1
IsMinPlusMatrix 5.1-8
IsMinPlusMatrixCollColl 5.1-9
IsMinPlusMatrixCollection 5.1-9
IsMinPlusMatrixMonoid 5.7-2
IsMinPlusMatrixSemigroup 5.7-1
IsMonogenicInverseMonoid 15.2-8
IsMonogenicInverseSemigroup 15.2-7
IsMonogenicMonoid 14.1-11
IsMonogenicSemigroup 14.1-10
IsMonoidAsSemigroup 14.1-12
IsNTPMatrix 5.1-8
IsNTPMatrixCollColl 5.1-9
IsNTPMatrixCollection 5.1-9
IsNTPMatrixMonoid 5.7-2
IsNTPMatrixSemigroup 5.7-1
IsomorphismMatrixGroup 5.7-9
IsomorphismMonoid 6.5-2
IsomorphismPermGroup 6.5-5
IsomorphismReesMatrixSemigroup, for a D-class 12.4-7
    for a semigroup 13.15-1
IsomorphismReesMatrixSemigroupOverPermGroup 13.15-1
IsomorphismReesZeroMatrixSemigroup 13.15-1
IsomorphismReesZeroMatrixSemigroupOverPermGroup 13.15-1
IsomorphismSemigroup 6.5-1
IsomorphismSemigroups 17.1-3
IsOntoBooleanMat 5.3-14
IsOrthodoxSemigroup 14.1-13
IsPartialOrderBooleanMat 5.3-15
IsPartialPermBipartition 3.5-15
IsPartialPermBipartitionMonoid 3.8-3
IsPartialPermBipartitionSemigroup 3.8-3
IsPartialPermPBR 4.5-11
IsPBR 4.1-1
IsPBRCollColl 4.1-2
IsPBRCollection 4.1-2
IsPBRMonoid 4.6-1
IsPBRSemigroup 4.6-1
IsPermBipartition 3.5-14
IsPermBipartitionGroup 3.8-4
IsPermPBR 4.5-12
IsRectangularBand 14.1-14
IsRectangularGroup 14.1-15
IsReesCongruenceClass 16.8-2
IsReflexiveBooleanMat 5.3-11
IsRegularGreensClass 12.3-2
IsRegularSemigroup 14.1-16
IsRightCongruenceClass 16.3-3
IsRightSemigroupCongruence 16.1-3
IsRightSimple 14.1-8
IsRightZeroSemigroup 14.1-17
IsRMSCongruenceByLinkedTriple 16.6-1
IsRMSCongruenceClassByLinkedTriple 16.6-3
IsRMSIsoByTriple 17.2-1
IsRowTrimBooleanMat 5.3-9
IsRTrivial 14.1-18
IsRZMSCongruenceByLinkedTriple 16.6-1
IsRZMSCongruenceClassByLinkedTriple 16.6-3
IsRZMSIsoByTriple 17.2-1
IsSemiband 14.1-7
IsSemigroupCongruence 16.1-1
IsSemigroupWithAdjoinedZero 14.1-19
IsSemilattice 14.1-20
IsSimpleSemigroup 14.1-21
IsSubrelation 16.5-1
IsSuperrelation 16.5-2
IsSymmetricBooleanMat 5.3-10
IsSynchronizingSemigroup, for a transformation semigroup 14.1-22
    for a transformation semigroup and a positive integer 14.1-22
IsTorsion 5.7-4
    for an integer matrix 5.5-2
IsTotalBooleanMat 5.3-14
IsTransBipartition 3.5-12
IsTransformationPBR 4.5-9
IsTransitive, for a transformation semigroup and a pos int 13.12-7
    for a transformation semigroup and a set 13.12-7
IsTransitiveBooleanMat 5.3-12
IsTrimBooleanMat 5.3-9
IsTropicalMatrix 5.1-8
IsTropicalMatrixCollection 5.1-9
IsTropicalMatrixMonoid 5.7-2
IsTropicalMatrixSemigroup 5.7-1
IsTropicalMaxPlusMatrix 5.1-8
IsTropicalMaxPlusMatrixCollColl 5.1-9
IsTropicalMaxPlusMatrixCollection 5.1-9
IsTropicalMaxPlusMatrixMonoid 5.7-2
IsTropicalMaxPlusMatrixSemigroup 5.7-1
IsTropicalMinPlusMatrix 5.1-8
IsTropicalMinPlusMatrixCollColl 5.1-9
IsTropicalMinPlusMatrixCollection 5.1-9
IsTropicalMinPlusMatrixMonoid 5.7-2
IsTropicalMinPlusMatrixSemigroup 5.7-1
IsUniformBlockBijection 3.5-17
IsUnitRegularMonoid 14.1-23
IsUniversalPBR 4.5-7
IsUniversalSemigroupCongruence 16.9-1
IsUniversalSemigroupCongruenceClass 16.9-2
IsVertex, for a graph inverse semigroup element 11.1-3
IsZeroGroup 14.1-24
IsZeroRectangularBand 14.1-25
IsZeroSemigroup 14.1-26
IsZeroSimpleSemigroup 14.1-27
IteratorCanonical 13.1-1
IteratorFromOldGeneratorsFile 19.1-3
IteratorFromPickledFile 19.1-3
IteratorOfDClasses 12.2-2
IteratorOfDClassReps 12.2-1
IteratorOfHClasses 12.2-2
IteratorOfHClassReps 12.2-1
IteratorOfLClasses 12.2-2
IteratorOfLClassReps 12.2-1
IteratorOfRClasses 12.2-2
IteratorOfRClassReps 12.2-1
JClasses 12.1-4
JoinIrreducibleDClasses 15.1-2
JoinLeftSemigroupCongruences 16.5-4
JoinRightSemigroupCongruences 16.5-4
JoinSemigroupCongruences 16.5-4
JoinSemilatticeOfCongruences, for a congruence poset and a function 16.4-10
    for a list or collection and a function 16.4-10
JonesMonoid 8.3-3
KernelOfSemigroupCongruence 16.7-4
LargestElementSemigroup 13.12-8
LatticeOfCongruences, for a semigroup 16.4-5
    for a semigroup and a multiplicative element collection 16.4-5
LatticeOfLeftCongruences, for a semigroup 16.4-5
    for a semigroup and a multiplicative element collection 16.4-5
LatticeOfRightCongruences, for a semigroup 16.4-5
    for a semigroup and a multiplicative element collection 16.4-5
LClass 12.1-2
LClasses 12.1-4
LClassNC 12.1-3
LClassOfHClass 12.1-1
LClassReps 12.1-5
LeftBlocks 3.5-6
LeftCayleyGraphSemigroup 13.2-1
LeftCongruenceClasses 16.3-5
LeftCongruenceClassOfElement 16.3-4
LeftCongruencesOfSemigroup, for a semigroup 16.4-1
    for a semigroup and a multiplicative element collection 16.4-1
LeftInverse, for a matrix over finite field 5.4-6
LeftOne, for a bipartition 3.2-4
LeftProjection 3.2-4
LeftSemigroupCongruence 16.2-2
LeftZeroSemigroup 9.1-5
LengthOfLongestDClassChain 12.1-11
MajorantClosure 15.1-3
Matrix, for a filter and a matrix 5.1-5
    for a semiring and a matrix 5.1-5
MaximalDClasses 12.1-7
MaximalSubsemigroups, for a finite semigroup 13.10-1
    for a finite semigroup and a record 13.10-1
MeetSemigroupCongruences 16.5-3
MinimalCongruences, for a congruence poset 16.4-11
    for a list or collection 16.4-11
MinimalCongruencesOfSemigroup, for a semigroup 16.4-2
    for a semigroup and a multiplicative element collection 16.4-2
MinimalDClass 12.1-6
MinimalFactorization 13.5-3
MinimalIdeal 13.7-1
MinimalIdealGeneratingSet 7.2-2
MinimalInverseMonoidGeneratingSet 13.6-4
MinimalInverseSemigroupGeneratingSet 13.6-4
MinimalLeftCongruencesOfSemigroup, for a semigroup 16.4-2
    for a semigroup and a multiplicative element collection 16.4-2
MinimalMonoidGeneratingSet 13.6-4
MinimalRightCongruencesOfSemigroup, for a semigroup 16.4-2
    for a semigroup and a multiplicative element collection 16.4-2
MinimalSemigroupGeneratingSet 13.6-4
MinimalWord, for free inverse semigroup element 10.3-2
MinimumGroupCongruence 16.7-7
Minorants 15.1-4
ModularPartitionMonoid 8.3-10
MonogenicSemigroup 9.1-2
MotzkinMonoid 8.3-6
MultiplicativeNeutralElement, for an H-class 12.4-5
MultiplicativeZero 13.7-3
MunnSemigroup 8.2-1
NaturalLeqBlockBijection 3.4-3
NaturalLeqInverseSemigroup 15.1-1
NaturalLeqPartialPermBipartition 3.4-2
NewIdentityMatrixOverFiniteField 5.4-3
NewMatrixOverFiniteField, for a filter, a field, an integer, and a list 5.4-1
NewZeroMatrixOverFiniteField 5.4-3
NonTrivialCongruenceClasses 16.3-7
NonTrivialEquivalenceClasses 16.3-6
NonTrivialLeftCongruenceClasses 16.3-7
NonTrivialRightCongruenceClasses 16.3-7
NormalizedPrincipalFactor 12.4-8
Normalizer, for a perm group, semigroup, record 13.11-1
    for a semigroup, record 13.11-1
NormalizeSemigroup 5.7-5
NrBlocks, for a bipartition 3.5-9
    for blocks 3.5-9
NrCongruenceClasses 16.3-9
NrDClasses 12.1-9
NrEquivalenceClasses 16.3-8
NrHClasses 12.1-9
NrIdempotents 13.9-2
NrLClasses 12.1-9
NrLeftBlocks 3.5-7
NrLeftCongruenceClasses 16.3-9
NrMaximalSubsemigroups 13.10-2
NrRClasses 12.1-9
NrRegularDClasses 12.1-8
NrRightBlocks 3.5-8
NrRightCongruenceClasses 16.3-9
NrTransverseBlocks, for a bipartition 3.5-2
    for blocks 3.6-4
NumberBlist 5.3-7
NumberBooleanMat 5.3-6
NumberPBR 4.5-4
OnBlist 5.3-4
OnLeftBlocks 3.7-2
OnLeftCongruenceClasses 16.3-13
OnRightBlocks 3.7-1
OnRightCongruenceClasses 16.3-14
Order 5.5-3
OrderAntiEndomorphisms 8.1-5
OrderEndomorphisms, monoid of order preserving transformations 8.1-5
PartialBrauerMonoid 8.3-2
PartialDualSymmetricInverseMonoid 8.3-7
PartialJonesMonoid 8.3-4
PartialOrderAntiEndomorphisms 8.1-5
PartialOrderEndomorphisms 8.1-5
PartialOrderOfDClasses 12.1-10
PartialPermLeqBipartition 3.4-1
PartialTransformationMonoid 8.1-3
PartialUniformBlockBijectionMonoid 8.3-8
PartitionMonoid 8.3-1
PBR 4.2-1
PBRNumber 4.5-4
PeriodNTPMatrix 5.1-12
PermLeftQuoBipartition 3.4-4
PlanarModularPartitionMonoid 8.3-10
PlanarPartitionMonoid 8.3-9
PlanarUniformBlockBijectionMonoid 8.3-8
PODI, monoid of order preserving or reversing partial perms 8.2-3
POI, monoid of order preserving partial perms 8.2-3
POPI, monoid of orientation preserving partial perms 8.2-3
PORI, monoid of orientation preserving or reversing partial perms 8.2-3
PosetOfCongruences 16.4-9
PosetOfPrincipalCongruences, for a semigroup 16.4-6
    for a semigroup and a multiplicative element collection 16.4-6
PosetOfPrincipalLeftCongruences, for a semigroup 16.4-6
    for a semigroup and a multiplicative element collection 16.4-6
PosetOfPrincipalRightCongruences, for a semigroup 16.4-6
    for a semigroup and a multiplicative element collection 16.4-6
PositionCanonical 13.1-2
PrimitiveIdempotents 15.1-5
PrincipalCongruencesOfSemigroup, for a semigroup 16.4-3
    for a semigroup and a multiplicative element collection 16.4-3
PrincipalFactor 12.4-8
PrincipalLeftCongruencesOfSemigroup, for a semigroup 16.4-3
    for a semigroup and a multiplicative element collection 16.4-3
PrincipalRightCongruencesOfSemigroup, for a semigroup 16.4-3
    for a semigroup and a multiplicative element collection 16.4-3
ProjectionFromBlocks 3.6-6
RadialEigenvector 5.6-2
Random, for a semigroup 13.3-1
RandomBipartition 3.2-7
RandomBlockBijection 3.2-7
RandomInverseMonoid 6.6-1
RandomInverseSemigroup 6.6-1
RandomMatrix, for a filter and a matrix 5.1-7
    for a semiring and a matrix 5.1-7
RandomMonoid 6.6-1
RandomPBR 4.2-2
RandomSemigroup 6.6-1
Range, for a graph inverse semigroup element 11.1-2
RankOfBipartition 3.5-2
RankOfBlocks 3.6-4
RClass 12.1-2
RClasses 12.1-4
RClassNC 12.1-3
RClassOfHClass 12.1-1
RClassReps 12.1-5
ReadGenerators 19.1-1
ReadOldGenerators 19.1-1
RectangularBand 9.1-3
ReflexiveBooleanMatMonoid 8.6-3
RegularBooleanMatMonoid 8.6-2
RegularDClasses 12.1-8
RepresentativeOfMinimalDClass 13.7-2
RepresentativeOfMinimalIdeal 13.7-2
RightBlocks 3.5-5
RightCayleyGraphSemigroup 13.2-1
RightCongruenceClasses 16.3-5
RightCongruenceClassOfElement 16.3-4
RightCongruencesOfSemigroup, for a semigroup 16.4-1
    for a semigroup and a multiplicative element collection 16.4-1
RightCosetsOfInverseSemigroup 15.1-6
RightInverse, for a matrix over finite field 5.4-6
RightOne, for a bipartition 3.2-5
RightProjection 3.2-5
RightSemigroupCongruence 16.2-3
RightZeroSemigroup 9.1-5
RMSCongruenceByLinkedTriple 16.6-2
RMSCongruenceClassByLinkedTriple 16.6-4
RMSIsoByTriple 17.2-2
RMSNormalization 6.5-7
RookMonoid 8.2-2
RookPartitionMonoid 8.3-1
RowRank, for a matrix over finite field 5.4-5
RowSpaceBasis, for a matrix over finite field 5.4-4
RowSpaceTransformation, for a matrix over finite field 5.4-4
RowSpaceTransformationInv, for a matrix over finite field 5.4-4
RZMSCongruenceByLinkedTriple 16.6-2
RZMSCongruenceClassByLinkedTriple 16.6-4
RZMSConnectedComponents 13.14-2
RZMSDigraph 13.14-1
RZMSIsoByTriple 17.2-2
RZMSNormalization 6.5-6
SameMinorantsSubgroup 15.1-7
SchutzenbergerGroup 12.4-2
SemigroupCongruence 16.2-1
SemigroupIdeal 7.1-1
SemigroupIdealOfReesCongruence 16.8-1
Semigroups package overview 1.
SEMIGROUPS.DefaultOptionsRec 6.3-1
SemigroupsMakeDoc 2.4-1
SemigroupsTestExtreme 2.5-3
SemigroupsTestInstall 2.5-1
SemigroupsTestStandard 2.5-2
SingularApsisMonoid 8.3-11
SingularBrauerMonoid 8.3-2
SingularCrossedApsisMonoid 8.3-11
SingularDualSymmetricInverseMonoid 8.3-7
SingularFactorisableDualSymmetricInverseMonoid 8.3-8
SingularJonesMonoid 8.3-3
SingularModularPartitionMonoid 8.3-10
SingularOrderEndomorphisms 8.1-5
SingularPartitionMonoid 8.3-1
SingularPlanarModularPartitionMonoid 8.3-10
SingularPlanarPartitionMonoid 8.3-9
SingularPlanarUniformBlockBijectionMonoid 8.3-8
SingularTransformationMonoid 8.1-4
SingularTransformationSemigroup 8.1-4
SingularUniformBlockBijectionMonoid 8.3-8
SLM 8.5-2
SmallerDegreePartialPermRepresentation 15.1-8
SmallestElementSemigroup 13.12-8
SmallestIdempotentPower 13.4-2
SmallestMultiplicationTable 17.1-2
SmallGeneratingSet 13.6-2
SmallInverseMonoidGeneratingSet 13.6-2
SmallInverseSemigroupGeneratingSet 13.6-2
SmallMonoidGeneratingSet 13.6-2
SmallSemigroupGeneratingSet 13.6-2
Source, for a graph inverse semigroup element 11.1-2
SpecialLinearMonoid 8.5-2
SpectralRadius 5.6-3
Star, for a bipartition 3.2-6
    for a PBR 4.5-1
StarOp, for a bipartition 3.2-6
    for a PBR 4.5-1
StructureDescription, for an H-class 12.4-6
StructureDescriptionMaximalSubgroups 12.4-4
StructureDescriptionSchutzenbergerGroups 12.4-3
SubsemigroupByProperty, for a semigroup and function 6.4-2
    for a semigroup, function, and limit on the size of the subsemigroup 6.4-2
Successors 5.3-5
SupersemigroupOfIdeal 7.2-3
TemperleyLiebMonoid 8.3-3
TexString 18.2-1
ThresholdNTPMatrix 5.1-12
ThresholdTropicalMatrix 5.1-11
TikzString 18.3-1
TraceOfSemigroupCongruence 16.7-5
TransposedMatImmutable, for a matrix over finite field 5.4-8
TriangularBooleanMatMonoid 8.6-6
TrivialSemigroup 9.1-1
UnderlyingSemigroupOfCongruencePoset 16.4-8
UnderlyingSemigroupOfSemigroupWithAdjoinedZero 13.7-4
UniformBlockBijectionMonoid 8.3-8
UnitriangularBooleanMatMonoid 8.6-6
UniversalPBR 4.2-5
UniversalSemigroupCongruence 16.9-3
UnweightedPrecedenceDigraph 5.6-4
VagnerPrestonRepresentation 15.1-9
WriteGenerators 19.1-2
ZeroSemigroup 9.1-4

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Bib Ind

generated by GAPDoc2HTML